Right-hand limits and left-hand limits

The notation for the right-hand limit is
$\lim _{x \rightarrow c^{+}} f(x) \quad$ "The limit of $f(x)$ as x approaches c from the right"
The $(+)$ is there to say that x approaches c through values greater than c on the line
 numbers.

The notation for the left-hand limit is $\lim _{x \rightarrow c^{-}} f(x) \quad$ "The limit of $f(x)$ as x approaches c from the left" The (-) is there to say that x approaches c through values less than c on the line
 numbers.

Examples: The greatest integer function $f(x)=[x]$ has difference right-hand and lefthand limits at each integer. As we see in figure:

1. $\lim _{x \rightarrow 2^{+}}[x]=2 \quad$ but $\quad \lim _{x \rightarrow 2^{-}}[x]=1$
2. $\lim _{x \rightarrow-1^{+}}[x]=-1$
but $\quad \lim _{x \rightarrow-1^{-}}[x]=-2$
While
3. $\lim _{x \rightarrow 1.5^{+}}[x]=1 \quad$ but $\quad \lim _{x \rightarrow 1.5^{-}}[x]=1$

One sided vs. two sided limits:

DEFINITION:

A function $f(x)$ has a limit as x approaches c if and only if the right-hand and left-hand limits at c exist and are equal. In symbol:
syllabus

$$
\lim _{x \rightarrow c} f(x)=L \Leftrightarrow \lim _{x \rightarrow c^{+}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{-}} f(x)=L
$$

Example: Discuss the limit properties of the function $f(x)$ which shown in figure.
at $x=0 \quad \lim _{x \rightarrow 0^{+}} f(x)=1$
$\lim _{x \rightarrow 0^{-}} f(x)$ does not exist (because the
function is not defined to the left of $x=0$)

- at $x=1 \quad \lim _{x \rightarrow 1^{-}} f(x)=0$ even though $f(1)=1$
$\lim _{x \rightarrow 1^{+}} f(x)=1$
$\lim _{x \rightarrow 1} f(x)$ does not exist, because the right-hand and left-hand limits are not equal.
at $x=2 \quad \lim _{x \rightarrow 2^{-}} f(x)=1$
$\lim _{x \rightarrow 2^{+}} f(x)=1$
$\lim _{x \rightarrow 2} f(x)=1$ even though $f(2)=2$
at $x=3 \quad \lim _{x \rightarrow 3^{-}} f(x)=2$
$\lim _{x \rightarrow 3^{+}} f(x)=2$
$\lim _{x \rightarrow 3} f(x)=f(3)=2$
- at $x=4 \quad \lim _{x \rightarrow 4^{-}} f(x)=1$ even though $f(4)=0.5$
$\lim _{x \rightarrow 4^{+}} f(x)$ does not exist, because the function is not defined to the right of $x=4$.

Limit Involving Infinity:

It means that the limits include $x \rightarrow+\infty$ or $x \rightarrow-\infty$ and $\lim f(x)=\infty$ or $\lim f(x)=-\infty$
Let $y=\frac{1}{x}$ then

1. $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty \quad$ the limit does not exit.
2. $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \quad$ the limit does not exit.
3. $\lim _{x \rightarrow+\infty} \frac{1}{x}=0$
4. $\lim _{x \rightarrow-\infty} \frac{1}{x}=0$

Examples: Find the limits of the following:

1. $\lim _{x \rightarrow \infty}\left(5+\frac{1}{x}\right)=\lim _{x \rightarrow \infty} 5+\lim _{x \rightarrow \infty} \frac{1}{x}=5+0=5$
2. $\lim _{x \rightarrow \infty} \frac{x}{7 x+4}=\lim _{x \rightarrow \infty} \frac{x / x}{7 x / x+4 / x}=\lim _{x \rightarrow \infty} \frac{1}{7+4 / x}=\frac{1}{7+0}=\frac{1}{7}$

Note: In rational functions when x approaches infinity divide both the numerator and denominator by the largest bower of x in the denominator.
3. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-x+3}{3 x^{2}+5}=\lim _{x \rightarrow \infty} \frac{2 x^{2} / x^{2}-x / x^{2}+3 / x^{2}}{3 x^{2} / x^{2}+5 / x^{2}}=\lim _{x \rightarrow \infty} \frac{2-1 / x+3 / x^{2}}{3+5 / x^{2}}=\frac{2-0+0}{3+0}=\frac{2}{3}$
4. $\lim _{x \rightarrow \infty} \frac{4 x^{2}-3}{3 x}=\lim _{x \rightarrow \infty} \frac{4 x^{2} / x-3 / x}{3 x / x}=\lim _{x \rightarrow \infty} \frac{4 x-3 / x}{3}=\frac{4^{*}(\infty)}{3}=\infty \quad$ the limit does not exit.
5. $\lim _{x \rightarrow \infty} \frac{5 x+3}{2 x^{2}-1}=\lim _{x \rightarrow \infty} \frac{5 x / x^{2}+3 / x^{2}}{2 x^{2} / x^{2}-1 / x^{2}}=\lim _{x \rightarrow \infty} \frac{5 / x+3 / x^{2}}{2-1 / x}=\frac{0-0}{2-0}=\frac{0}{2}=0$

Summery for Rational Functions

a) $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=0 \quad$ if $\operatorname{deg}(f)<\operatorname{deg}(g)$
b) $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}$ is finite if $\operatorname{deg}(f)=\operatorname{deg}(g)$
c) $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}$ is infinite if $\operatorname{deg}(f)>\operatorname{deg}(g)$
6. $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$

Sol.: Remember $\quad-1 \leq \sin x \leq 1$ divide the inequality by x yield

$$
\frac{-1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x}
$$

$\lim _{x \rightarrow \infty}-\frac{1}{x}=0 \quad$ and $\quad \lim _{x \rightarrow \infty} \frac{1}{x}=0$
$\therefore \lim _{x \rightarrow \infty} \frac{\sin x}{x}=0 \quad$ (sandwich theorem)
7. $\lim _{x \rightarrow \infty} x \sin \frac{1}{x}$

Sol.: Let $x=\frac{1}{z} \Rightarrow z=\frac{1}{x}$
When $x \rightarrow \infty \quad \Rightarrow \quad z \rightarrow 0$
$\therefore \lim _{x \rightarrow 0} \frac{1}{z} \sin z=1$
8. $\lim _{x \rightarrow \infty} \sqrt{x^{2}+6 x+1}-\sqrt{x^{2}+x}=(\infty-\infty)$

Sol.: $\lim _{x \rightarrow \infty} \sqrt{x^{2}+6 x+1}-\sqrt{x^{2}+x} * \frac{\sqrt{x^{2}+6 x+1}+\sqrt{x^{2}+x}}{\sqrt{x^{2}+6 x+1}+\sqrt{x^{2}+x}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\left(x^{2}+6 x+1\right)-\left(x^{2}+x\right)}{\sqrt{x^{2}+6 x+1}+\sqrt{x^{2}+x}}=\lim _{x \rightarrow \infty} \frac{x^{2}+6 x+1-x^{2}-x}{\sqrt{x^{2}+6 x+1}+\sqrt{x^{2}+x}}=\lim _{x \rightarrow \infty} \frac{5 x+1}{\sqrt{x^{2}+6 x+1}+\sqrt{x^{2}+x}} \\
& =\lim _{x \rightarrow \infty} \frac{5 x / x+1 / x}{\sqrt{x^{2} / x^{2}+6 x / x^{2}+1 / x^{2}}+\sqrt{x^{2} / x^{2}+x / x^{2}}}=\frac{5+0}{\sqrt{1+0+0}+\sqrt{1+0}}=\frac{5}{1+1}=\frac{5}{2}=2.5
\end{aligned}
$$

Homework: Find the limits of the following:

1. $\lim _{x \rightarrow \infty} \frac{2 x+x \sin 3 x}{5 x^{2}-2 x+1}$
2. $\lim _{x \rightarrow \infty} \sqrt{x+\sqrt{x}}-\sqrt{x}$
3. $\lim _{x \rightarrow \infty} \frac{(2 x-1)^{5}}{\left(3 x^{2}+2 x-7\right)\left(x^{3}-9 x\right)}$
4. $\lim _{x \rightarrow \infty}\left(2+\frac{\sin x}{x}\right)$
5. $\lim _{x \rightarrow \infty} \frac{\cos (1 / x)}{(1 / x)}$
6. $\lim _{x \rightarrow \infty} \frac{x}{|x|}$
7. $\lim _{x \rightarrow 0} \frac{|x|}{x}$
